Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
EMBO J ; 40(21): e107532, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34549820

RESUMEN

Astrocytes regulate brain-wide functions and also show region-specific differences, but little is known about how general and region-specific functions are aligned at the single-cell level. To explore this, we isolated adult mouse diencephalic astrocytes by ACSA-2-mediated magnetic-activated cell sorting (MACS). Single-cell RNA-seq revealed 7 gene expression clusters of astrocytes, with 4 forming a supercluster. Within the supercluster, cells differed by gene expression related to ion homeostasis or metabolism, with the former sharing gene expression with other regions and the latter being restricted to specific regions. All clusters showed expression of proliferation-related genes, and proliferation of diencephalic astrocytes was confirmed by immunostaining. Clonal analysis demonstrated low level of astrogenesis in the adult diencephalon, but not in cerebral cortex grey matter. This led to the identification of Smad4 as a key regulator of diencephalic astrocyte in vivo proliferation and in vitro neurosphere formation. Thus, astrocytes show diverse gene expression states related to distinct functions with some subsets being more widespread while others are more regionally restricted. However, all share low-level proliferation revealing the novel concept of adult astrogenesis in the diencephalon.


Asunto(s)
Astrocitos/metabolismo , Linaje de la Célula/genética , Diencéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Proteína Smad4/genética , Animales , Astrocitos/clasificación , Astrocitos/citología , Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Diencéfalo/citología , Diencéfalo/crecimiento & desarrollo , Ontología de Genes , Redes Reguladoras de Genes , Sustancia Gris/citología , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/metabolismo , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Anotación de Secuencia Molecular , Familia de Multigenes , Transducción de Señal , Proteína Smad4/metabolismo
2.
Brain Struct Funct ; 225(2): 481-510, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31901976

RESUMEN

The prethalamic eminence (PThE) is the most dorsal subdomain of the prethalamus, which corresponds to prosomere 3 (p3) in the prosomeric model for vertebrate forebrain development. In mammalian and avian embryos, the PThE can be delimited from other prethalamic areas by its lack of Dlx gene expression, as well as by its expression of glutamatergic-related genes such as Pax6, Tbr2 and Tbr1. Several studies in mouse embryos postulate the PThE as a source of migratory neurons that populate given telencephalic centers. Concerning the avian PThE, it is visible at early embryonic stages as a compact primordium, but its morphology becomes cryptic at perinatal stages, so that its developmental course and fate are largely unknown. In this report, we characterize in detail the ontogeny of the chicken PThE from 5 to 15 days of development, according to morphological criteria, and using Tbr1 as a molecular marker for this structure and its migratory cells. We show that initially the PThE contacts rostrally the medial pallium, the pallial amygdala and the paraventricular hypothalamic alar domain. Approximately from embryonic day 6 onwards, the PThE becomes progressively reduced in size and cell content due to massive tangential migration of many of its neuronal derivatives towards nearby subpallial and hypothalamic regions. Our analysis supports that these migratory neurons from the avian PThE target telencephalic centers such as the commissural septal nuclei, as previously described in mammals, but also the diagonal band and preoptic areas, and hypothalamic structures in the paraventricular hypothalamic area.


Asunto(s)
Proteínas Aviares/metabolismo , Movimiento Celular , Embrión de Pollo/embriología , Diencéfalo/crecimiento & desarrollo , Neuronas/fisiología , Proteínas de Dominio T Box/metabolismo , Animales , Embrión de Pollo/metabolismo , Diencéfalo/metabolismo , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo
3.
J Comp Neurol ; 526(17): 2870-2883, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30225841

RESUMEN

Recent evidence demonstrates that the pulvinar nuclei play a critical role in shaping the connectivity and function of the multiple cortical areas they connect. Surprisingly, however, little is known about the development of this area, the largest corpus of the thalamic nuclei, which go on to occupy 40% of the adult thalamus in the human. It was proposed that the nonhuman primate and the human pulvinar develop according to very different processes, with a greatly reduced neurogenic period in nonhuman primate compared to human and divergent origins. In the marmoset monkey, we demonstrate that neurons populating the pulvinar are generated throughout gestation, suggesting that this aspect of development is more similar to the human than first predicted. While we were able to confirm the diencephalic source of pulvinar neurons, we provide new evidence contesting the presence of an additional niche in the telencephalon. Finally, our study defines new molecular markers that will simplify future investigations in the development and evolution of the pulvinar.


Asunto(s)
Callithrix/fisiología , Pulvinar/crecimiento & desarrollo , Acetilcolinesterasa/metabolismo , Animales , Animales Recién Nacidos , Proliferación Celular , Diencéfalo/embriología , Diencéfalo/crecimiento & desarrollo , Femenino , Regulación de la Expresión Génica , Inmunohistoquímica , Neurogénesis/fisiología , Neuronas/fisiología , Embarazo , Pulvinar/citología , Pulvinar/embriología , Tercer Ventrículo/citología , Tercer Ventrículo/embriología , Vías Visuales/fisiología
4.
Int J Dev Neurosci ; 69: 10-16, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29908249

RESUMEN

Axonal projection is controlled by discrete regions localized at the neuroepithelium, guiding the neurite growth during embryonic development. These regions exert their effect through the expression of a family of chemotropic molecules, which actively participate in the formation of neuronal connections of the central nervous system in vertebrates. Previous studies describe prosomere 1 (P1) as a possible organizer of axonal growth of the rostral rhombencephalon, contributing to the caudal projection of reticulospinal rhombencephalic neurons. This work studies the contribution of chemotropic signals from P1 or pretectal medial longitudinal fascicle (MLF) neurons upon the caudal projection of the interstitial nuclei of Cajal (INC). By using in ovo surgeries, retrograde axonal labeling, and immunohistochemical techniques, we were able to determine that the absence of P1 generates a failure in the INC caudal projection, while drastically diminishing the reticulospinal rhombencephalic neurons projections. The lack of INC projection significantly decreases the number of reticulospinal neurons projecting to the MLF. We found a 48.6% decrease in the projections to the MLF from the rostral and bulbar areas. Similarly, the observed decrease at prosomere 2 was 51.5%, with 61.8% and 32.4% for prosomeres 3 and 4, respectively; thus, constituting the most affected rostral regions. These results suggest the following possibilities: i, that the axons of the reticulospinal neurons employ the INC projection as a scaffold, fasciculating with this pioneer projection; and ii, that the P1 region, including pretectal MLF neurons, exerts a chemotropic effect upon the INC caudal projection. Nonetheless the identification of these chemotropic signals is still a pending task.


Asunto(s)
Diencéfalo/crecimiento & desarrollo , Células Intersticiales de Cajal/fisiología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Animales , Axones , Embrión de Pollo , Diencéfalo/fisiología , Inmunohistoquímica , Neuritas , Neuronas/fisiología , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/fisiología
5.
BMC Dev Biol ; 17(1): 5, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28407732

RESUMEN

BACKGROUND: Cranial neural crest cells (NCCs) are a unique embryonic cell type which give rise to a diverse array of derivatives extending from neurons and glia through to bone and cartilage. Depending on their point of origin along the antero-posterior axis cranial NCCs are rapidly sorted into distinct migratory streams that give rise to axial specific structures. These migratory streams mirror the underlying segmentation of the brain with NCCs exiting the diencephalon and midbrain following distinct paths compared to those exiting the hindbrain rhombomeres (r). The genetic landscape of cranial NCCs arising at different axial levels remains unknown. RESULTS: Here we have used RNA sequencing to uncover the transcriptional profiles of mouse cranial NCCs arising at different axial levels. Whole transcriptome analysis identified over 120 transcripts differentially expressed between NCCs arising anterior to r3 (referred to as r1-r2 migratory stream for simplicity) and the r4 migratory stream. Eight of the genes differentially expressed between these populations were validated by RT-PCR with 2 being further validated by in situ hybridisation. We also explored the expression of the Neuropilins (Nrp1 and Nrp2) and their co-receptors and show that the A-type Plexins are differentially expressed in different cranial NCC streams. CONCLUSIONS: Our analyses identify a large number of genes differentially regulated between cranial NCCs arising at different axial levels. This data provides a comprehensive description of the genetic landscape driving diversity of distinct cranial NCC streams and provides novel insight into the regulatory networks controlling the formation of specific skeletal elements and the mechanisms promoting migration along different paths.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Cresta Neural/citología , Cresta Neural/crecimiento & desarrollo , Análisis de Secuencia de ARN/métodos , Animales , Movimiento Celular , Diencéfalo/citología , Diencéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/citología , Mesencéfalo/crecimiento & desarrollo , Ratones , Proteínas del Tejido Nervioso/genética , Neuropilina-1/genética , Neuropilina-2/genética , Rombencéfalo/citología , Rombencéfalo/crecimiento & desarrollo
6.
Mech Dev ; 141: 90-99, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27151576

RESUMEN

The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM). Surprisingly, Wnt agonist facilitated eye field-like tissue specification in CDM. In contrast, the addition of Wnt antagonist diminished eye field tissue formation in GMEM+KSR. Furthermore, the morphological formation of the eye tissue anlage, including the optic vesicle, was accompanied by Wnt signaling activation. Additionally, using CDM culture, we developed an efficient method for generating Rax+/Chx10+ retinal progenitors, which could become fully stratified retina. Here we provide a new avenue for exploring the mechanisms of eye field specification in vitro.


Asunto(s)
Proteína Axina/genética , Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , Ojo/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Diencéfalo/crecimiento & desarrollo , Ojo/embriología , Ojo/metabolismo , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Núcleos Talámicos Intralaminares/crecimiento & desarrollo , Ratones , Retina/crecimiento & desarrollo , Retina/metabolismo , Factores de Transcripción/genética , Vía de Señalización Wnt/efectos de los fármacos
7.
Brain Struct Funct ; 221(4): 1809-31, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-25682262

RESUMEN

The gene CUG-BP, Elav-like factor 6 (CELF6) appears to be important for proper functioning of neurocircuitry responsible for behavioral output. We previously discovered that polymorphisms in or near CELF6 may be associated with autism spectrum disorder (ASD) in humans and that the deletion of this gene in mice results in a partial ASD-like phenotype. Here, to begin to understand which circuits might mediate these behavioral disruptions, we sought to establish in what structures, with what abundance, and at which ages Celf6 protein is present in the mouse brain. Using both a knockout-validated antibody to Celf6 and a novel transgenic mouse line, we characterized Celf6 expression in the mouse brain across development. Celf6 gene products were present early in neurodevelopment and in adulthood. The greatest protein expression was observed in distinct nuclei of the diencephalon and neuromodulatory cell populations of the midbrain and hindbrain, with clear expression in dopaminergic, noradrenergic, histaminergic, serotonergic and cholinergic populations, and a variety of presumptive peptidergic cells of the hypothalamus. These results suggest that disruption of Celf6 expression in hypothalamic nuclei may impact a variety of behaviors downstream of neuropeptide activity, while disruption in neuromodulatory transmitter expressing areas such as the ventral tegmental area, substantia nigra, raphe nuclei and locus coeruleus may have far-reaching influences on overall brain activity.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas CELF/metabolismo , Diencéfalo/crecimiento & desarrollo , Diencéfalo/metabolismo , Neuronas/metabolismo , Neuronas Adrenérgicas/metabolismo , Animales , Proteínas CELF/genética , Neuronas Colinérgicas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hipotálamo/metabolismo , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/metabolismo , Neuronas Serotoninérgicas/metabolismo
8.
J Comp Neurol ; 524(4): 896-913, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26287569

RESUMEN

Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways.


Asunto(s)
Diencéfalo/crecimiento & desarrollo , Proteínas de Peces/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/citología , Oryzias/crecimiento & desarrollo , Telencéfalo/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Movimiento Celular/fisiología , Diencéfalo/citología , Diencéfalo/metabolismo , Proteínas de Peces/genética , Hormona Liberadora de Gonadotropina/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional/métodos , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal/métodos , Neuronas/metabolismo , Oryzias/anatomía & histología , Oryzias/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Telencéfalo/citología , Telencéfalo/metabolismo
9.
Physiol Behav ; 151: 38-45, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26130445

RESUMEN

Selective breeding has caused striking phenotypic differences among chickens. For example, the broiler, a fast-growing phenotype, is a relatively heavy bird selected for meat production while the layer, a slower-growing, lighter bird, was developed for egg production. Broilers are prone to early obesity and show physiological and behavioural differences in response to stressors compared with layers. However, the genetic causes of the differences in the responses to stressors between them have not been determined. The purpose of the present study was to compare the ontogeny of the corticotropin-releasing hormone (CRH) system between broilers and layers, because the CRH system plays a major role in regulating stress. We found that fast-growing broilers showed significantly lower levels of diencephalic CRH mRNA expression at post-hatch days 8 and 15 and pituitary CRH receptor 1 mRNA expression from the embryonic to post-hatch stage than slower-growing layers. However, a significantly higher level of CRH-binding protein (CRH-BP), which inactivates CRH and prevents pituitary-adrenal stimulation, was found in broilers compared with layers. Indeed, broilers showed significantly lower levels of plasma corticosterone (CORT) than layers. Subjecting birds to isolation stress did not alter the CORT level of broilers, but increased that of layers. Collectively, the stress-coping actions of the CRH system via the hypothalamic-pituitary-adrenal (HPA) axis might be less responsive in broilers than in layers due to differential gene expression. Together, the present results provide evidence that genetic selection has altered gene expression in the CRH system of the fast-growing broiler, causing blunted HPA axis activity in response to stressors.


Asunto(s)
Proteínas Aviares/metabolismo , Pollos/crecimiento & desarrollo , Pollos/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Fenotipo , Animales , Glucemia/fisiología , Corticosterona/sangre , Diencéfalo/crecimiento & desarrollo , Diencéfalo/fisiología , Ácidos Grasos no Esterificados/sangre , Hipófisis/crecimiento & desarrollo , Hipófisis/fisiología , ARN Mensajero/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Aislamiento Social , Especificidad de la Especie , Estrés Psicológico/fisiopatología
10.
Endocrinology ; 155(5): 1944-55, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24605826

RESUMEN

Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17ß and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17ß treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.


Asunto(s)
Envejecimiento , Núcleo Hipotalámico Dorsomedial/metabolismo , Regulación hacia Abajo , Hormonas Hipotalámicas/metabolismo , Neuronas/metabolismo , Regiones Promotoras Genéticas , Animales , Biomarcadores/metabolismo , Extensiones de la Superficie Celular/metabolismo , Diencéfalo/citología , Diencéfalo/crecimiento & desarrollo , Diencéfalo/metabolismo , Núcleo Hipotalámico Dorsomedial/citología , Núcleo Hipotalámico Dorsomedial/crecimiento & desarrollo , Estradiol/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hormonas Hipotalámicas/genética , Hipotálamo/citología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Neurofibrillas/metabolismo , Neuronas/citología , Ratas , Ratas Transgénicas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo , Telencéfalo/citología , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo
11.
J Comp Neurol ; 522(1): 131-68, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23818330

RESUMEN

The cerebellum is recognized as an evolutionary innovation of jawed vertebrates, whose most primitive group is represented by the chondrichthyans, or cartilaginous fishes. A comprehensive knowledge of cerebellar connections in these fishes might shed light on the basal organization of the cerebellar system. Although the organization of the precerebellar system is known in adults, developmental studies are essential for understanding the origin and evolution of precerebellar nuclei. In the present work we performed a developmental study of cerebellar connections in embryos and juveniles of an advanced shark species, Scyliorhinus canicula, by application of tract tracing in combination with immunohistochemical techniques. Main precerebellar cell populations were located in the diencephalon (pretectum and thalamus), mesencephalon (reticular formation and nucleus ruber), rhombencephalon (cerebellar nucleus, reticular formation, and inferior olive), and spinal cord (ventral horn). The order of arrival of cerebellar afferent projections throughout development revealed a common pattern with other jawed vertebrates, which was helpful for comparison of stages of cerebellar development. The neurochemical study of the inferior olive and other precerebellar nuclei revealed many shared features with other gnathostomes. Furthermore, because many precerebellar nuclei originate from rhombic lips, the first analysis of neuronal migrations from these lips was performed with markers of neuroblasts. The shared features of development and organization of precerebellar connections observed between sharks and amniotes suggest that their basic pattern was established early in gnathostome evolution.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Tiburones/crecimiento & desarrollo , Vías Aferentes/anatomía & histología , Vías Aferentes/crecimiento & desarrollo , Animales , Tronco Encefálico/anatomía & histología , Tronco Encefálico/crecimiento & desarrollo , Cerebelo/anatomía & histología , Diencéfalo/anatomía & histología , Diencéfalo/crecimiento & desarrollo , Inmunohistoquímica , Técnicas de Trazados de Vías Neuroanatómicas , Tiburones/anatomía & histología , Especificidad de la Especie , Médula Espinal/anatomía & histología , Médula Espinal/crecimiento & desarrollo
12.
Cell Death Differ ; 20(1): 169-80, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22976838

RESUMEN

EphAs and ephrin-As have been implicated in the morphogenesis of the developing brain. We found that EphA7 and ephrin-A5 are coexpressed in the dorsal midline (DM) of the diencephalon and anterior mesencephalon. Interestingly, programmed cell death (PCD) of the neural epithelial cells normally found in this region was reduced in ephrin-A5/ephrin-A2 dual-deficient embryos. In contrast, in vivo expression of ephrin-A5-Fc or full-length ephrin-A5 strongly induced apoptosis in neural epithelial cells and was accompanied by severe brain malformation during embryonic development. Expression of ephrinA5-Fc correlated with apoptosis of EphA7-expressing cells, whereas null mutation of ephrin-A5 resulted in the converse phenotype. Importantly, null mutation of caspase-3 or endogenous ephrin-A5 attenuated the PCD induced by ectopically overexpressed ephrin-A5. Together, our results suggest that brain region-specific PCD may occur in a region where EphAs cluster with neighboring ephrin-As through cell-cell contact.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Efrina-A2/metabolismo , Efrina-A5/metabolismo , Receptor EphA7/metabolismo , Animales , Apoptosis/fisiología , Encéfalo/citología , Comunicación Celular/fisiología , Diencéfalo/citología , Diencéfalo/crecimiento & desarrollo , Diencéfalo/metabolismo , Femenino , Humanos , Mesencéfalo/citología , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Embarazo , Transducción de Señal
13.
J Neurosci ; 32(39): 13488-500, 2012 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23015438

RESUMEN

The most conserved part of the vertebrate dopaminergic system is the orthopedia (otp)-expressing diencephalic neuronal population that constitutes the dopaminergic diencephalospinal tract (DDT). Although studies in the neonatal murine spinal cord in vitro suggest an early locomotor role of the DDT, the function of the DDT in developing vertebrates in vivo remains unknown. Here, we investigated the role of the DDT in the locomotor development of zebrafish larvae. To assess the development of the behavioral and neural locomotor pattern, we used high-throughput video tracking in combination with peripheral nerve recordings. We found a behavioral and neural correspondence in the developmental switch from an immature to mature locomotor pattern. Blocking endogenous dopamine receptor 4 (D(4)R) signaling in vivo either before or after the developmental switch prevented or reversed the switch, respectively. Spinal transections of post-switch larvae reestablished the immature locomotor pattern, which was rescued to a mature-like pattern via spinal D(4)R agonism. Selective chemogenetic ablation of otp b (otpb) neurons that contribute to the DDT perpetuated the immature locomotor pattern in vivo. This phenotype was recapitulated by diencephalic transections that removed the dopaminergic otpb population and was rescued to a mature-like locomotor pattern by D(4)R agonism. We conclude that the dopaminergic otpb population, via the DDT, is responsible for spinal D(4)R signaling to mediate the developmental switch to the mature locomotor pattern of zebrafish. These results, integrated with the mammalian literature, suggest that the DDT represents an evolutionarily conserved neuromodulatory system that is necessary for normal vertebrate locomotor development.


Asunto(s)
Diencéfalo/crecimiento & desarrollo , Dopamina/metabolismo , Locomoción/fisiología , Médula Espinal/crecimiento & desarrollo , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Diencéfalo/citología , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Electrofisiología , Agonistas de Aminoácidos Excitadores/farmacología , Proteínas Fluorescentes Verdes/genética , Etiquetado Corte-Fin in Situ , Larva , Locomoción/efectos de los fármacos , Metronidazol/farmacología , N-Metilaspartato/farmacología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/lesiones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrorreductasas/genética , Nervios Periféricos/fisiología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Receptores de Dopamina D4/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Grabación en Video , Pez Cebra , Proteínas de Pez Cebra/genética
14.
Neuron ; 75(4): 648-62, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22920256

RESUMEN

Intrinsically photosensitive retinal ganglion cells (ipRGCs) and their nuclear targets in the subcortical visual shell (SVS) are components of the non-image-forming visual system, which regulates important physiological processes, including photoentrainment of the circadian rhythm. While ipRGCs have been the subject of much recent research, less is known about their central targets and how they develop to support specific behavioral functions. We describe Sox14 as a marker to follow the ontogeny of the SVS and find that the complex forms from two narrow stripes of Dlx2-negative GABAergic progenitors in the early diencephalon through sequential waves of tangential migration. We characterize the requirement for Sox14 to orchestrate the correct distribution of neurons among the different nuclei of the network and describe how Sox14 expression is required both to ensure robustness in circadian entrainment and for masking of motor activity.


Asunto(s)
Ritmo Circadiano/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Células Ganglionares de la Retina/fisiología , Factores de Transcripción SOXB2/metabolismo , Células Madre/fisiología , Vías Visuales/fisiología , Ácido gamma-Aminobutírico/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Temperatura Corporal/genética , Movimiento Celular/genética , Distribución de Chi-Cuadrado , Ritmo Circadiano/genética , Diencéfalo/citología , Diencéfalo/embriología , Diencéfalo/crecimiento & desarrollo , Embrión de Mamíferos , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio , Masculino , Ratones , Ratones Noqueados , Actividad Motora/genética , Mutación/genética , Neurogénesis/genética , Técnicas de Cultivo de Órganos , Estimulación Luminosa , Reflejo/genética , Factores de Transcripción SOXB2/genética , Factores de Transcripción/deficiencia , Transducción Genética/métodos , Vías Visuales/citología
15.
Mol Psychiatry ; 17(9): 946-54, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22508465

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, increased impulsivity and emotion dysregulation. Linkage analysis followed by fine-mapping identified variation in the gene coding for Latrophilin 3 (LPHN3), a putative adhesion-G protein-coupled receptor, as a risk factor for ADHD. In order to validate the link between LPHN3 and ADHD, and to understand the function of LPHN3 in the etiology of the disease, we examined its ortholog lphn3.1 during zebrafish development. Loss of lphn3.1 function causes a reduction and misplacement of dopamine-positive neurons in the ventral diencephalon and a hyperactive/impulsive motor phenotype. The behavioral phenotype can be rescued by the ADHD treatment drugs methylphenidate and atomoxetine. Together, our results implicate decreased Lphn3 activity in eliciting ADHD-like behavior, and demonstrate its correlated contribution to the development of the brain dopaminergic circuitry.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Diencéfalo/patología , Diencéfalo/fisiopatología , Neuronas Dopaminérgicas/patología , Actividad Motora/genética , Degeneración Nerviosa/genética , Receptores de Péptidos/fisiología , Animales , Clorhidrato de Atomoxetina , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Diencéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/farmacología , Inhibidores de Captación de Dopamina/uso terapéutico , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Técnicas de Silenciamiento del Gen/psicología , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Imagen Molecular/métodos , Imagen Molecular/psicología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Degeneración Nerviosa/patología , Propilaminas/farmacología , Propilaminas/uso terapéutico , Receptores de Péptidos/genética , Pez Cebra
16.
J Chem Neuroanat ; 41(2): 73-85, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21126574

RESUMEN

PINK1 is a 581 amino acid protein with a serine/threonine kinase domain and an N-terminal mitochondrial targeting motif. The enzyme is expressed in the brain as well as in several tissues such as heart, skeletal muscle, liver, kidney, pancreas and testis. In the present study, we have investigated by Western blot analysis and immunohistochemistry the presence and distribution of PINK1 in the brain, eye and inner ear of mouse during embryonic development. In the brain we detected two PINK1 molecular isoforms of 55 kDa and 66 kDa. Immunoreactive perikarya first appeared at stage E15 in the diencephalon within the thalamus, the hypothalamus, the periventricular layers of the third ventricle and in the rhombencephalon at level of the pons. Subsequently, new PINK1-positive neurons were found in the midbrain within the floor and the periventricular layers of the ventral wall of the mesencephalic vesicle (stage E17) as well as in the neopallial cortex, the tegmentum of the midbrain and the periventricular region of the caudal part of the rhombencephalon (stage E19). At P0, PINK1-immunoreactive cells appeared in the striatum, the mantle layer and caudal part of the medulla oblongata and the cerebellum. The spatio-temporal expression of PINK1 and its heterogeneous distribution suggest that the enzyme might be involved in neuroregulatory processes during embryogenesis. In the eye, PINK1-immunoreactivity was found in the lens and in the cornea, whereas in the inner ear the enzyme was expressed in the ependymal and subependymal cells of the saccule and in the semicircular canals indicating that PINK1 plays a role in the development of these sensory organs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Proteínas Quinasas/análisis , Animales , Córnea/embriología , Córnea/crecimiento & desarrollo , Córnea/metabolismo , Diencéfalo/embriología , Diencéfalo/crecimiento & desarrollo , Diencéfalo/metabolismo , Desarrollo Embrionario , Femenino , Inmunohistoquímica , Cristalino/embriología , Cristalino/crecimiento & desarrollo , Cristalino/metabolismo , Masculino , Mesencéfalo/embriología , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/metabolismo , Ratones , Neuronas/citología , Especificidad de Órganos , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Proteínas Quinasas/genética , Rombencéfalo/embriología , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/metabolismo , Sáculo y Utrículo/embriología , Sáculo y Utrículo/crecimiento & desarrollo , Sáculo y Utrículo/metabolismo , Canales Semicirculares/embriología , Canales Semicirculares/crecimiento & desarrollo , Canales Semicirculares/metabolismo
17.
Brain Res ; 1373: 67-78, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21167138

RESUMEN

There is a clear core-shell organization in the auditory nuclei of amniotes. However, such organization only exists in the mesencephalic, but not in the diencephalic auditory regions of amphibians. To gain insights into how this core-shell organization developed and evolved, we injected a small dose of [(3)H]-thymidine into tadpoles of Xenopus laevis at peak stages of neurogenesis in the mesencephalic and diencephalic auditory areas. Following different survival times, the germinal sites and migrating routes of cells were examined in the shell (laminar nucleus, Tl; magnocellular nucleus, Tmc) and core (principal nucleus, Tp) regions of the mesencephalic auditory nucleus, torus semicircularis (Ts), as well as in the diencephalic auditory areas (posterior thalamic nucleus, P; central thalamic nucleus, C). Double labeling for [(3)H]-thymidine autoradiography and immunohistochemistry for vimentin was also performed to help determine the routes of cell migration. We found three major results. First, the germinal sites of Tp were intercalated between Tl and Tmc, arising from those of the shell regions. Second, although the germinal sites of Tl, Tmc, and Tp were located in the same brain levels (at rostromedial or caudomedial levels of Ts), neurogenesis in Tl or Tmc started earlier than that in Tp. Finally, the P and C were also generated in different ventricle sites. However, unlike Ts their neurogenesis showed no obvious temporal differences. These data demonstrate that a highly differentiated auditory region, such as Tp in Ts, is lacking in the diencephalon of amphibian. Our data are discussed from the view of the constitution and evolutionary origins of auditory nuclei in vertebrates.


Asunto(s)
Movimiento Celular/fisiología , Diencéfalo/citología , Mesencéfalo/citología , Neurogénesis/fisiología , Factores de Edad , Animales , Vías Auditivas/citología , Vías Auditivas/fisiología , Autorradiografía/métodos , Diferenciación Celular , Diencéfalo/crecimiento & desarrollo , Larva , Mesencéfalo/crecimiento & desarrollo , Timidina/metabolismo , Tritio/metabolismo , Vimentina/metabolismo , Xenopus
18.
Nat Neurosci ; 13(6): 767-75, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436479

RESUMEN

The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Neurogénesis/genética , Animales , Atlas como Asunto , Diencéfalo/embriología , Diencéfalo/crecimiento & desarrollo , Diencéfalo/metabolismo , Femenino , Perfilación de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hipotálamo/embriología , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Neuroepiteliales/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fenotipo , Reproducibilidad de los Resultados , Caracteres Sexuales , Especificidad de la Especie , Telencéfalo/embriología , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo
19.
J Comp Neurol ; 518(13): 2423-36, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20503420

RESUMEN

A(11) diencephalospinal dopamine (DA) neurons provide the major source of DA innervation to the spinal cord. DA in the dorsal and ventral horns modulates sensory, motor, nociceptive, and sexual functions. Previous studies from our laboratory revealed a sex difference in the density of DA innervation in the lumbar spinal cord. The purpose of this study was to determine whether sex differences in spinal cord DA are androgen dependent, influenced by adult or perinatal androgens, and whether a sex difference in the number of lumbar-projecting A(11) neurons exists. Adult male mice have significantly higher DA concentrations in the lumbar spinal cord than either females or males carrying the testicular feminization mutation (tfm) in the androgen receptor (AR) gene, suggesting an AR-dependent origin. Spinal cord DA concentrations are not changed following orchidectomy in adult male mice or testosterone administration to ovariectomized adult female mice. Administration of exogenous testosterone to postnatal day 2 female mice results in DA concentrations in the adult lumbar spinal cord comparable to those of males. Male mice display significantly more lumbar-projecting A(11) DA neurons than females, particularly in the caudal portion of the A(11) cell body region, as determined by retrograde tract tracing and immunohistochemistry directed toward tyrosine hydroxylase. These results reveal an AR-dependent sex difference in both the number of lumbar-projecting A(11) DA neurons and the lumbar spinal cord DA concentrations, organized by the presence of androgens early in life. The AR-dependent sex difference suggests that this system serves a sexually dimorphic function in the lumbar spinal cord.


Asunto(s)
Diencéfalo/fisiología , Dopamina/metabolismo , Neuronas/fisiología , Receptores Androgénicos/metabolismo , Caracteres Sexuales , Médula Espinal/fisiología , Envejecimiento , Animales , Animales Recién Nacidos , Diencéfalo/crecimiento & desarrollo , Femenino , Humanos , Vértebras Lumbares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Receptores Androgénicos/genética , Médula Espinal/crecimiento & desarrollo , Testosterona/metabolismo
20.
Eur J Neurosci ; 31(4): 623-33, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20141529

RESUMEN

Mutations in the human PTEN-induced kinase 1 (PINK1) gene are linked to recessive familial Parkinson's disease. Animal models of altered PINK1 function vary greatly in their phenotypic characteristics. Drosophila pink1 mutants exhibit mild dopaminergic neuron degeneration and locomotion defects. Such defects are not observed in mice with targeted null mutations in pink1, although these mice exhibit impaired dopamine release and synaptic plasticity. Here, we report that in zebrafish, morpholino-mediated knockdown of pink1 function did not cause large alterations in the number of dopaminergic neurons in the ventral diencephalon. However, the patterning of these neurons and their projections are perturbed. This is accompanied by locomotor dysfunction, notably impaired response to tactile stimuli and reduced swimming behaviour. All these defects can be rescued by expression of an exogenous pink1 that is not a target of the morpholinos used. These results indicate that normal PINK1 function during development is necessary for the proper positioning of populations of dopaminergic neurons and for the establishment of neuronal circuits in which they are implicated.


Asunto(s)
Diencéfalo/crecimiento & desarrollo , Proteínas Quinasas/genética , Natación/fisiología , Percepción del Tacto/fisiología , Pez Cebra , Secuencia de Aminoácidos , Animales , Diencéfalo/anatomía & histología , Diencéfalo/efectos de los fármacos , Diencéfalo/metabolismo , Dopamina/metabolismo , Larva/efectos de los fármacos , Larva/fisiología , Datos de Secuencia Molecular , Neuronas/metabolismo , Neuronas/fisiología , Oligonucleótidos Antisentido/farmacología , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...